Skip to main content
Log in

Mechanisms of Schooling Behavior of Fish

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The basic mechanisms of schooling behavior of fish, which is a genetically fixed species character, have been considered. The intention of schooling fish to unite with individuals of their own species or with fish that are similar in shape, color and motor activity pattern (schooling reaction) is an innate reflex that manifests itself in natural and artificial environments in individuals with different individual experiences. The intention to unite is expressed the stronger, the more schooling behavior is characteristic of fish. The larger the school, the more attractive it is for fish. To choose a school for association, it is enough that it be 2–3 times larger than the rest. This difference decreases with an increase in the number of fish in schools, with the threat of a predator attack and other stresses. In juveniles, the intention to unite with larger schools is more pronounced than in adult fish. Given a choice, fish prefer individuals of their own species and fish similar in size and color. Imitation is an unconditioned reflex, which is another important mechanism of school behavior. Imitative reactions are most pronounced in schooling fish, but their manifestation is possible if the imitated and imitating fish are conspecific and close in size. An innate optomotor reaction (following reflex) ensures that fish maintain a single school during movements and rapid maneuvering. Schooling coordination is achieved by focusing on the actions of one of the closest partners, and the parallel arrangement of fish is achieved by accurately following the leading partner. Recognition of individuals of their own species, mutual orientation and coordination of actions of fish is facilitated by schooling coloration—spots, stripes and patterns on the body, head and fins, differing in position, size, shape, color, brightness and other details. Important visual landmarks are the contrasting eyes of school partners. Schooling coloration is not present in all schooling fish. In many species, schooling coloration changes as the fish grow and develop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Ali, J.R., Deacon, A.E., Mahabir, K., et al., Heterospecific shoaling in an invasive poeciliid: Shared history does not affect shoal cohesion, Anim. Behav., 2018, vol. 138, pp. 1–8. https://doi.org/10.1016/j.anbehav.2018.01.023

    Article  Google Scholar 

  2. Aronov, M.P., School contact and reaction of fish to a mirror, in Povedenie i retseptsii ryb (Behavior and Reception of Fish), Moscow: Nauka, 1967, pp. 18–23.

  3. Barber, I. and Ruxton, G.D., The importance of stable schooling: Do familiar sticklebacks stick together?, Proc. R. Soc. Lond. B., 2000, vol. 267, no. 1439, pp. 151–155. https://doi.org/10.1098/rspb.2000.0980

    Article  CAS  Google Scholar 

  4. Barber, I. and Wright, H.A., How strong are familiarity preferences in shoaling fish?, Anim. Behav., 2001, vol. 61, no. 5, pp. 975–979. https://doi.org/10.1006/anbe.2000.1665

    Article  Google Scholar 

  5. Bernhardt, B., Lampert, K.P., Leese, F., et al., Are shoals of minnow Phoxinus phoxinus formed by close kin?, J. Fish. Biol., 2012, vol. 80, no. 3, pp. 713–721. https://doi.org/10.1111/j.1095-8649.2011.03198.x

    Article  CAS  PubMed  Google Scholar 

  6. Blonder, A.F. and Tarvin, K.A., Male zebrafish (Danio rerio) do not preferentially associate with familiar over unfamiliar conspecifics, J. Fish. Biol., 2022, vol. 100, no. 4, pp. 1025–1032. https://doi.org/10.1111/jfb.15008

    Article  PubMed  Google Scholar 

  7. Bogomolova, E.M., Saakyan, S.A., and Kozarovitskii, L.M., Imitative conditioned reflexes in fish, Tr. soveshch. po fiziologii ryb (Proc. Meeting on Fish Physiology), Moscow: Akad. Nauk SSSR, 1958, pp. 51–54.

  8. Breder, C.M., Studies on social groupings in fishes, Bull. AMNH, 1959, vol. 117, Article 6, pp. 393–482.

  9. Breder, C.M. and Halpern, F., Innate and acquired behavior affecting the aggregations of fishes, Physiol. Zool., 1946, vol. 19, no. 2, pp. 154–190. https://doi.org/10.1086/physzool.19.2.30151891

    Article  PubMed  Google Scholar 

  10. Brown, G.A. and Colgan, P.W., Individual and species recognition in centrarchid fishes: Evidence and hypotheses, Behav. Ecol. Sociobiol., 1986, vol. 19, no. 5, pp. 373–379. https://doi.org/10.1007/BF00295711

    Article  Google Scholar 

  11. Brown, G.E. and Smith, R.J.F., Fathead minnows use chemical cues to discriminate natural shoalmates from unfamiliar conspecifics, J. Chem. Ecol., 1994, vol. 20, no. 12, pp. 3051–3061. https://doi.org/10.1007/BF02033710

    Article  CAS  PubMed  Google Scholar 

  12. Chinarina, A.D., Change in coloration of the cod Gadus morhua morhua L. (single and in a school) depending on the background, Dokl. Akad. Nauk SSSR, 1959, vol. 126, no. 3, pp. 667–670.

    Google Scholar 

  13. Chinarina, A.D., Signal value and mechanisms of color change in some marine fish, in Signalizatsiya morskikh zhivotnykh (Signalization of Marine Animals), Leningrad: Nauka, 1971, pp. 115–134.

  14. Crook, A.C., Determinants of the physiological colour patterns of juvenile parrotfish, Chlorurus sordidus, Anim. Behav., 1997, vol. 53, no. 6, pp. 1251–1261. https://doi.org/10.1006/anbe.1996.0444

    Article  CAS  PubMed  Google Scholar 

  15. Dafni, J. and Diamant, A., School-oriented mimicry, a new type of mimicry in fishes, Mar. Ecol. Prog. Ser., 1984, vol. 20, nos. 1–2, pp. 45–50. https://doi.org/10.3354/meps020045

    Article  Google Scholar 

  16. Dambach, M., Vergleichende Untersuchungen über das Schwarmverhalten von Tilapia-Jungfischen (Cichlidae, Teleostei), Z. Tierpsychol., 1963, vol. 20, no. 3, pp. 267–296.

    Article  Google Scholar 

  17. Darkov, A.A., Ekologicheskie osobennosti zritel’noi signalizatsii ryb (Ecological Features of Visual Signaling in Fish), Moscow: Nauka, 1980.

  18. Darkov, A.A., Behavioral reactions of schooling fishes in individuals of the same species and the question of school formation, J. Ichthyol., 1975, vol. 15, no. 4, pp. 691–694.

    Google Scholar 

  19. Dmitrieva, E.N., Morpho-ecological analysis of two species of crucian carp, Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1957, no. 16, pp. 102–170.

  20. Dugatkin, L.A., FitzGerald, G.J., and Lavoie J., Juvenile three-spined sticklebacks avoid parasitized conspecifics, Environ. Biol. Fish., 1994, vol. 39, no. 2, pp. 215–218. https://doi.org/10.1007/BF00004940

    Article  Google Scholar 

  21. Engeszer, R.E., Ryan, M.J., and Parichy, D.M., Learned social preference in zebrafish, Curr. Biol., 2004, vol. 14, no. 10, pp. 881–884. https://doi.org/10.1016/j.cub.2004.04.042

    Article  CAS  PubMed  Google Scholar 

  22. Farmer, N.A., Ribble, D.O., and Miller, D.G., III, Influence of familiarity on shoaling behaviour in Texas and blacktail shiners, J. Fish. Biol., 2004, vol. 64, no. 3, pp. 776–782. https://doi.org/10.1111/j.1095-8649.2004.00332.x

    Article  Google Scholar 

  23. Froese, R. and Pauly, D., FishBase. World Wide Web Electronic Publication, Version 08/2022, 2022. www.fishbase.org.

  24. Frommen, J.G. and Bakker, T.C.M., Adult three-spined sticklebacks prefer to shoal with familiar kin, Behaviour, 2004, vol. 141, nos. 11–12, pp. 1401–1409. https://doi.org/10.1163/1568539042948196

    Article  Google Scholar 

  25. Frommen, J.G., Luz, C., and Bakker, T.C.M., Nutritional state influences shoaling preference for familiars, Zoology, 2007, vol. 110, no. 5, pp. 369–376. https://doi.org/10.1016/j.zool.2007.06.002

    Article  PubMed  Google Scholar 

  26. Gerasimov, V.V., Ekologo-fiziologicheskie zakonomernosti stainogo povedeniya ryb (Ecological and Physiological Patterns of Schooling Behavior of Fish) Moscow: Nauka, 1983.

  27. Girsa, I.I., Osveshchennost’ i povedenie ryb (Illumination and Behavior of Fish), Moscow: Nauka, 1981.

  28. Gómez-Laplaza, L.M., Shoal choice in juvenile angelfish (Pterophyllum scalare): Effects of social status and activity, Ethol. Ecol. Evol., 2006, vol. 18, no. 4, pp. 261–273. https://doi.org/10.1080/08927014.2006.9522695

    Article  Google Scholar 

  29. Gómez-Laplaza, L.M. and Fuente, A., Shoaling decisions in angelfish: The roles of social status and familiarity, Ethology, 2007, vol. 113, no. 9, pp. 847–855. https://doi.org/10.1111/j.1439-0310.2007.01397.x

    Article  Google Scholar 

  30. Gómez-Laplaza, L.M. and Gerlai, R., Discrimination of large quantities: Weber’s law and short-term memory in angelfish, Pterophyllum scalare, Anim. Behav., 2016, vol. 112, pp. 29–37. https://doi.org/10.1016/j.anbehav.2015.10.022

    Article  Google Scholar 

  31. Gregson, J.N.S. and Burt de Perera T., Shoaling in eyed and blind morphs of the characin Astyanax fasciatus under light and dark conditions, J. Fish. Biol., 2007, vol. 70, no. 5, pp. 1615–1619. https://doi.org/10.1111/j.1095-8649.2007.01430.x

    Article  Google Scholar 

  32. Griffiths, S.W., Preferences for familiar fish do not vary with predation risk in the European minnow, J. Fish. Biol., 1997, vol. 51, no. 3, pp. 489–495. https://doi.org/10.1111/j.1095-8649.1997.tb01506.x

    Article  Google Scholar 

  33. Hager, M.C. and Helfman, G.S., Safety in numbers: Shoal size choice by minnows under predatory threat, Behav. Ecol. Sociobiol., 1991, vol. 29, no. 4, pp. 271–276. https://doi.org/10.1007/BF00163984

    Article  Google Scholar 

  34. Herbert-Read, J.E., Perna, A., Mann, R.P., et al., Inferring the rules of interaction of shoaling fish, PNAC, 2011, vol. 108, no. 46, pp. 18726–18731. https://doi.org/10.1073/pnas.1109355108

    Article  CAS  Google Scholar 

  35. Herter, K., Fischdressuren und ihre sinnesphysiologischen Grundlagen, Berlin: Akad-Vlg, 1953.

    Google Scholar 

  36. Kanehiro, H., Suzuki, M., and Matuda, K., Characteristics of schooling behavior by the group size of rose bitterling in the experimental water tank, Bull. Jpn. Soc. Sci. Fish., 1985, vol. 51, no. 12, pp. 1977–1982. https://doi.org/10.2331/suisan.51.1977

    Article  Google Scholar 

  37. Katz, Y., Tunstrøm, K., Ioannou, C.C., et al., Inferring the structure and dynamics of interactions in schooling fish, PNAS, 2011, vol. 108, no. 46, pp. 18720–18725. https://doi.org/10.1073/pnas.1107583108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keenleyside, M.H.A., Some aspects of the schooling behaviour of fish, Behaviour, 1955, vol. 8, no. 1, pp. 183–247. https://doi.org/10.1163/156853955X00229

    Article  Google Scholar 

  39. Kerr, J.P., Grouping behaviour of the zebrafish as influenced by social isolation, Am. Zool., 1962, vol. 2, no. 4, pp. 532–533.

    Google Scholar 

  40. Koblitskaya, A.F., Opredelitel’ molodi presnovodnykh ryb (Key to Juvenile Freshwater Fishes), Moscow: Leg. Pishch. Prom-st, 1981.

  41. Köhler, D., Experimente zum Schwarmverhalten des Uklei, Aquarien-Terrarien, 1988, vol. 35, no. 7, pp. 239–243.

    Google Scholar 

  42. Korotkov, V.K., The behavior of some fish species in a trawl, Probl. Ichthyol., 1969, vol. 9, no. 6, pp. 893–899.

    Google Scholar 

  43. Kotrschal, A., Szorkovszky, A., Herbert-Read, J., et al., Rapid evolution of coordinated and collective movement in response to artificial selection, Sci. Adv., 2020, vol. 6, no. 49, Article eaba3148. https://doi.org/10.1126/sciadv.aba3148

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kowalko, J.E., Rohner, N., Rompani, S.B., et al., Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms, Curr. Biol., 2013, vol. 23, no. 19, pp. 1874–1883. https://doi.org/10.1016/j.cub.2013.07.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kozarovitskii, L.B., Following reflexes in fish, Tez. dokl. 3-go nauch. soveshch. po evolyutsionnoi fiziologii (Abstr. 3rd Sci. Meeting on Evolutionary Physiology), Leningrad: B.I, 1961, pp. 96–97.

  46. Krause, J., The influence of food competition and predation risk on size-assortative shoaling in juvenile chub (Leuciscus cephalus), Ethology, 1994, vol. 96, no. 2, pp. 105–116. https://doi.org/10.1111/j.1439-0310.1994.tb00886.x

    Article  Google Scholar 

  47. Krause, J. and Godin, J.-G.J., Shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae): Effects of predation risk, fish size, species composition and size of shoals, Ethology, 1994, vol. 98, no. 2, pp. 128–136. https://doi.org/10.1111/j.1439-0310.1994.tb01063.x

    Article  Google Scholar 

  48. Krause, J. and Godin, J.-G.J., Influence of parasitism on shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae), Ethology, 1996, vol. 102, no. 1, pp. 40–49. https://doi.org/10.1111/j.1439-0310.1996.tb01102.x

    Article  Google Scholar 

  49. Krause, J., Godin, J.-G.J., and Rubenstein, D., Group choice as a function of group size differences and assessment time in fish: The influence of species vulnerability to predation, Ethology, 1998, vol. 104, no. 1, pp. 68–74. https://doi.org/10.1111/j.1439-0310.1998.tb00030.x

    Article  Google Scholar 

  50. Lachlan, R.F., Crooks, L., and Laland, K.N., Who follows whom? Shoaling preferences and social learning of foraging information in guppies, Anim. Behav., 1998, vol. 56, no. 1, pp. 181–190. https://doi.org/10.1006/anbe.1998.0760

    Article  CAS  PubMed  Google Scholar 

  51. Laland, K.N. and Williams, K., Shoaling generates social learning of foraging information in guppies, Anim. Behav., 1997, vol. 53, no. 6, pp. 1161–1169. https://doi.org/10.1006/anbe.1996.0318

    Article  CAS  PubMed  Google Scholar 

  52. Lebedeva, N.E. and Chernyakov, Yu.L., On the chemical danger signal in the predator–prey system in fishes, Zhurn. Evol. Biokhim. Fiz., 1978, vol. 14, no. 4, pp. 392–397.

    CAS  Google Scholar 

  53. Lee-Jenkins, S.S.Y. and Godin, J.-G.J., Social familiarity and shoal formation in juvenile fishes, J. Fish. Biol., 2010, vol. 76, no. 3, pp. 580–590. https://doi.org/10.1111/j.1095-8649.2009.02512.x

    Article  CAS  PubMed  Google Scholar 

  54. Leshcheva, T.S. and Zhuikov, A.Yu., Obuchenie ryb (Fish Learning), Moscow: Nauka, 1989

  55. Leshcheva, T.S., Formation of defensive reflexes in roach [Rutilus rutilus (L.)] larvae through imitation, Probl. Ichthyol., 1968, vol. 8, no. 6, pp. 838–841.

    Google Scholar 

  56. Lobashev, M.E., Genetika (Genetics), Leningrad: Leningrad. Gos. Univ., 1967.

    Google Scholar 

  57. Losey, G.S., Cronin, T.W., Goldsmith, T.H., et al., The UV visual world of fishes: A review, J. Fish. Biol., 1999, vol. 54, no. 5, pp. 921–943. https://doi.org/10.1111/j.1095-8649.1999.tb00848.x

    Article  Google Scholar 

  58. Lythgoe, J.N., Visual pigments and visual range underwater, Vision Res., 1968, vol. 8, no. 8, pp. 997–1012. https://doi.org/10.1016/0042-6989(68)90073-4

    Article  CAS  PubMed  Google Scholar 

  59. Magurran, A.E., Seghers, B.H., Shaw, P.W., and Carvalho, G.R., Schooling preferences for familiar fish in the guppy, Poecilia reticulata, J. Fish. Biol., 1994, vol. 45, no. 3, pp. 401–406. https://doi.org/10.1111/j.1095-8649.1994.tb01322.x

    Article  Google Scholar 

  60. Malyukina, G.A., Kasumyan, A.O., and Marusov, E.A., The value of olfaction in the behavior of fish, in Sensornye sistemy: obonyanie i vkus (Sensory Systems: Olfaction and Taste), Leningrad: Nauka, 1980, pp. 30–44.

  61. Manteifel’, B.P., Ekologicheskie i evolyutsionnye aspekty povedeniya zhivotnykh (Ecological and Evolutionary Aspects of Animal Behavior), Moscow: Nauka, 1987.

  62. Masuda, R. and Tsukamoto, K., Morphological development in relation to phototaxis and rheotaxis in the striped jack, Pseudocaranx dentex, Mar. Freshw. Behav. Physiol., 1996, vol. 28, nos 1-2, pp. 75–90. https://doi.org/10.1080/10236249609378980

    Article  Google Scholar 

  63. McCann, L.I. and Matthews, J.J., The effects of lifelong isolation on species identification in zebra fish (Brachydanio rerio), Dev. Psychobiol., 1974, vol. 7, no. 2, pp. 159–163. https://doi.org/10.1002/dev.420070209

    Article  CAS  PubMed  Google Scholar 

  64. McCann, L.I., Koehn, D.J., and Kline, N.J., The effects of body size and body markings on nonpolarized schooling behaviour of zebrafish (Brachydanio rerio), J. Psychol., 1971, vol. 79, no. 1, pp. 71–75. https://doi.org/10.1080/00223980.1971.9923769

    Article  CAS  PubMed  Google Scholar 

  65. McRobert, S.P. and Bradner, J., The influence of body coloration on shoaling preferences in fish, Anim. Behav., 1998, vol. 56, no. 3, pp. 611–615. https://doi.org/10.1006/anbe.1998.0846

    Article  CAS  PubMed  Google Scholar 

  66. Middlemiss, K.L., Cook, D.G., Jerrett, A.R., and Davison, W., Effects of group size on school structure and behaviour in yellow-eyed mullet Aldrichetta forsteri, J. Fish. Biol., 2018, vol. 92, no. 5, pp. 1255–1272. https://doi.org/10.1111/jfb.13581

    Article  CAS  PubMed  Google Scholar 

  67. Milanovskii, Yu.E., and Rekurbatskii, V.A., On the methods of studying schooling behavior of fish, Nauch. Dokl. Vyssh. Shk. Biol. Nauki, 1960, no. 4, pp. 77–81.

  68. Nikol’skii, G.V., Ekologiya ryb (Fish Ecology), Moscow: Vyssh. Shk., 1974.

  69. Pacific Salmon Life Histories, Vancouver: Univ. British Columbia Press, 1991.

  70. Partridge, B.L., The effect of school size on the structure and dynamics of minnow school, Anim. Behav., 1980, vol. 28, no. 1, pp. 68–77. https://doi.org/10.1016/S0003-3472(80)80009-1

    Article  Google Scholar 

  71. Parzefall, J., Field observations in epigean and cave populations of the Mexican characid Astyanax mexicanus (Pisces, Characidae), Mém. Biospéol., 1983, vol. 10, pp. 171–176.

    Google Scholar 

  72. Pashchenko, N.I. and Kasumyan, A.O., Development of the olfactory organ in the ontogeny of carps (Cyprinidae), J. Ichthyol., 2017, vol. 57, no. 1, pp. 136–151. https://doi.org/10.1134/S0032945217010088

    Article  Google Scholar 

  73. Pavlov, D.S., Optomotornaya reaktsiya i osobennosti orientatsii ryb v potoke vody (Optomotor Reaction and Peculiarities of Fish Orientation in Water Flow), Moscow: Nauka, 1970.

  74. Pavlov, D.S., Biologicheskie osnovy upravleniya povedeniem ryb v potoke vody (Biological Bases of Fish Behavior Control in Water Flow), Moscow: Nauka, 1979.

  75. Pereira, P.H.C., Feitosa, J.L.L., and Ferreira, B.P., Mixed-species schooling behavior and protective mimicry involving coral reef fish from the genus Haemulon (Haemulidae), Neotrop. Ichthyol., 2011, vol. 9, no. 4, pp. 741–746. https://doi.org/10.1590/S1679-62252011005000037

    Article  Google Scholar 

  76. Peuhkuri, N., Ranta, E., and Seppä, P., Size-assortative schooling in free-ranging sticklebacks, Ethology, 1997, vol. 103, no. 4, pp. 318–324. https://doi.org/10.1111/j.1439-0310.1997.tb00021.x

    Article  Google Scholar 

  77. Pinder, A.C., Keys to larval and juvenile stages of coarse fishes from fresh waters in the British Isles, Freshw. Biol. Assoc. Sci. Publ., 2001, no. 60, pp. 1–136.

  78. Pitcher, T.J., Wyche, C.J., and Magurran, A.E., Evidence for position preferences in schooling mackerel, Anim. Behav., 1982, vol. 30, no. 3, pp. 932–934. https://doi.org/10.1016/S0003-3472(82)80170-X

    Article  Google Scholar 

  79. Pitcher, T.J., Magurran, A.E., and Edwards, J.I., Schooling mackerel and herring choose neighbours of similar size, Mar. Biol., 1985, vol. 86, no. 3, pp. 319–322. https://doi.org/10.1007/BF00397518

    Article  Google Scholar 

  80. Pitcher, T.J., Green, D., and Magurran, A.E., Dicing with death: Predator inspection behaviour in minnow shoals, J. Fish. Biol., 1986a, vol. 28, no. 4, pp. 439–448. https://doi.org/10.1111/j.1095-8649.1986.tb05181.x

    Article  Google Scholar 

  81. Pitcher, T.J., Magurran, A.E., and Allan, J.R., Size-segregative behaviour in minnow shoals, J. Fish. Biol., 1986b, vol. 29, no. sA, pp. 83–95. https://doi.org/10.1111/j.1095-8649.1986.tb05001.x

  82. Popov, G.V., Materials for the study of defensive conditioned reflexes in fish juveniles, Zh. Vyssh. Nervn. Deyatel’nosti, 1953, vol. 3, no. 5, pp. 774–788.

    CAS  Google Scholar 

  83. Protasov, V.R., Some functional features of vision and their biological significance in the life of nine fish species of the Black Sea, Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1961, vol. 39, pp. 72–95.

    Google Scholar 

  84. Protasov, V.R. and Altukhov, Yu.G., Study of visual-motor unconditioned reflexes of some fish (optomotor reactions), Tr. Karadag. Biol. St., 1960, no. 16, pp. 131–142.

  85. Quattrini, F.G., Bshary, R., and Roche, D.G., Does the presence of an odd individual affect group choice?, Behav. Ecol., 2018, vol. 29, no. 4, pp. 855–861. https://doi.org/10.1093/beheco/ary062

    Article  Google Scholar 

  86. Radakov, D.V., Schooling in the Ecology of Fish, New York: John Wiley, 1973.

    Google Scholar 

  87. Ranta, E. and Lindström, K., Assortative schooling in three-spined sticklebacks?, Ann. Zool. Fennici, 1990, vol. 27, no. 2, pp. 67–75.

    Google Scholar 

  88. Ranta, E., Juvonen, S.K., and Peuhkuri, N., Further evidence for the size-assortative schooling in sticklebacks, J. Fish. Biol., 1992a, vol. 41, no. 4, pp. 627–630. https://doi.org/10.1111/j.1095-8649.1992.tb02689.x

    Article  Google Scholar 

  89. Ranta, E., Lindström, K., and Peuhkuri, N., Size matters when three-spined sticklebacks go to school, Anim. Behav., 1992b, vol. 43, no. 1, pp. 160–162. https://doi.org/10.1016/S0003-3472(05)80082-X

    Article  Google Scholar 

  90. Rekubratskii, V.A., Ecological stereotypes of food-procuring and protective behavior of fish, in Povedenie i retseptsii ryb (Behavior and Reception of Fish), Moscow: Nauka, 1967, pp. 121–125.

  91. Rossi, V., Unitt, R., McNamara, M., et al., Skin patterning and internal anatomy in a fossil moonfish from the Eocene Bolca Lagerstätte illuminate the ecology of ancient reef fish communities, Palaeontol., 2022, vol. 65, no. 3, Article e12600. https://doi.org/10.1111/pala.12600

    Article  Google Scholar 

  92. Ruhl, N. and McRobert, S.P., The effect of sex and shoal size on shoaling behavior in Danio rerio, J. Fish. Biol., 2005, vol. 67, no. 5, pp. 1318–1326. https://doi.org/10.1111/j.0022-1112.2005.00826.x

    Article  Google Scholar 

  93. Ryer, C.H. and Olla, B.L., Influences of food distribution on fish foraging behaviour, Anim. Behav., 1995, vol. 49, no. 2, pp. 411–418. https://doi.org/10.1006/anbe.1995.0054

    Article  Google Scholar 

  94. Sbikin, Yu.N., Some aspects of the social and defensive behavior of young sturgeons (Acipenseridae), Zool. Zh., 1996, vol. 75, no. 3, pp. 383–390.

    Google Scholar 

  95. Schaefer, K.M., Comparative study of some morphological features of yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) tunas, Bull. IATTC, 1999, vol. 21, no. 7, pp. 491–525.

    Google Scholar 

  96. Sharpe, F.A. and Dill, L.M., The behavior of Pacific herring schools in response to artificial humpback whale bubbles, Can. J. Zool., 1997, vol. 75, no. 5, pp. 725–730. https://doi.org/10.1139/z97-093

    Article  Google Scholar 

  97. Shaw, E., The development of schooling behaviour in fishes, Physiol. Zool., 1960, vol. 33, no. 2, pp. 79–86. https://doi.org/10.1086/physzool.33.2.30152296

    Article  Google Scholar 

  98. Shaw, E., The development of schooling in fishes, Physiol. Zool., 1961, vol. 34, no. 4, pp. 263–272. https://doi.org/10.1086/physzool.34.4.30161205

    Article  Google Scholar 

  99. Shaw, E., The schooling of fishes, Sci. Am., 1962, vol. 206, no. 6, pp. 128–141. https://doi.org/10.1038/scientificamerican0662-128

    Article  Google Scholar 

  100. Shaw, E. and Tucker, A., The optomotor reaction of schooling carangid fishes, Anim. Behav., 1965, vol. 13, nos. 2–3, pp. 330–336. https://doi.org/10.1016/0003-3472(65)90052-7

    Article  CAS  PubMed  Google Scholar 

  101. Siebeck, U.E. and Marshall, N.J., Ocular media transmission of coral reef fish: Can coral reef fish see ultraviolet light?, Vision Res., 2001, vol. 41, no. 2, pp. 133–149. https://doi.org/10.1016/s0042-6989(00)00240-6

    Article  CAS  PubMed  Google Scholar 

  102. Siebeck, U.E., Parker, A.N., Sprenger, D., et al., A species of reef fish that uses ultraviolet patterns for covert face recognition, Curr. Biol., 2010, vol. 20, no. 5, pp. 407–410. https://doi.org/10.1016/j.cub.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  103. Soin, S.G., Morphological characteristics of juvenile fish in the Amur basin, in Issledovaniya po faune i flore Sovetskogo Soyuza (bespozvonochnye i ryby) (Research on Fauna and Flora of the Soviet Union (Invertebrates and Fishes)), Moscow: Mosk. Gos. Univ., 1978, pp. 192–244.

  104. Soin, S.G., Kasumyan, A.O., and Pashchenko, N.I., Ecological and morphological analysis of the development of the minnow, Phoxinus phoxinus (Cyprinidae), J. Ichthyol., 1981, vol. 21, no. 4, pp. 90–105.

    Google Scholar 

  105. Spence, R. and Smith, C., The role of early learning in determining shoaling preferences based on visual cues in the zebrafish, Danio rerio, Ethology, 2007, vol. 113, no. 1, pp. 62–67. https://doi.org/10.1111/j.1439-0310.2006.01295.x

    Article  Google Scholar 

  106. Spooner, C.M., Some observations on schooling in fish, J. Mar. Biol. Assoc. UK, 1931, vol. 17, no. 2, pp. 421–448. https://doi.org/10.1017/s0025315400050943

    Article  Google Scholar 

  107. Tang, W., Davidson, J.D., Zhang, G., et al., Genetic control of collective behavior in zebrafish, iScience, 2020, vol. 23, no. 3, Article 100942. https://doi.org/10.1016/j.isci.2020.100942

  108. Theodorakis, C.W., Size segregation and the effects of oddity on predation risk in minnow schools, Anim. Behav., 1989, vol. 38, no. 3, pp. 496–502. https://doi.org/10.1016/S0003-3472(89)80042-9

    Article  Google Scholar 

  109. Van Havre, N., FitzGerald G.J. Shoaling and kin recognition in the threespine stickleback (Gasterosteus aculeatus L.), Biol. Behav., 1988, vol. 13, no. 4, pp. 190–201.

    Google Scholar 

  110. Verheijen, F.J., Transmission of a flight reaction amongst a school of fish and the underlying sensory mechanisms, Experientia, 1956, vol. 12, no. 5, pp. 202–204. https://doi.org/10.1007/bf02170796

    Article  Google Scholar 

  111. Volkova, L.A., The role of the school in the forming of defensive reflexes in the juvenile Baikal omul, Coregonus autumnalis migratorius, J. Ichthyol., 1976, vol. 16, no. 3, pp. 485–490.

    Google Scholar 

  112. Ward, A.J.W., Hart, P.J.B., and Krause, J., The effects of habitat- and diet-based cues on association preferences in three-spined sticklebacks, Behav. Ecol., 2004, vol. 15, no. 6, pp. 925–929. https://doi.org/10.1093/beheco/arh097

    Article  Google Scholar 

  113. Ward, A.J.W., Holbrook, R.I., Krause, J., and Hart, P.J.B., Social recognition in sticklebacks: The role of direct experience and habitat cues, Behav. Ecol. Sociobiol., 2005, vol. 57, no. 6, pp. 575–583. https://doi.org/10.1007/s00265-004-0901-7

    Article  Google Scholar 

  114. Ward, A.J.W., Kent, M.I.A., and Webster, M.M., Social recognition and social attraction in group-living fishes, Front. Ecol. Evol., 2020, vol. 8, Article 15. https://doi.org/10.3389/fevo.2020.00015

    Article  Google Scholar 

  115. Wark, A.R., Greenwood, A.K., Taylor, E.M., et al., Heritable differences in schooling behavior among threespine stickleback populations revealed by a novel assay, PLOS ONE, 2011, vol. 6, no. 3, Article e18316. https://doi.org/10.1371/journal.pone.0018316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Webster, M.M., Goldsmith, J., Ward, A.J.W., and Hart, P.J.B., Habitat-specific chemical cues influence association preferences and shoal cohesion in fish, Behav. Ecol. Sociobiol., 2007, vol. 62, no. 2, pp. 273–280. https://doi.org/10.1007/s00265-007-0462-7

    Article  Google Scholar 

  117. Wilkens, H. and Strecker, U., Evolution in the Dark: Darwin’s Loss without Selection, Heidelberg: Springer Berlin, 2017. https://doi.org/10.1007/978-3-662-54512-6

  118. Williams, M., Rearing environments and their effects on schooling of fishes, Pubbl. Staz. Zool. Napoli, 1976, vol. 40, pp. 238–254.

    Google Scholar 

Download references

ACKNOWLEGMENTS

The authors express their sincere gratitude to A.A. Kazhlaev, L.S. Alekseeva, and A.S. Patseva (Moscow State University), who provided great assistance in preparing the article for publication. The authors are sincerely grateful to P.I. Kirillov (Institute of Ecology and Evolution, Russian Academy of Sciences) for careful and constructive editing of the text and illustrations, which improved the quality of the article.

Funding

The article was prepared within the framework of scientific projects of the state assignment of the Moscow State University No. 121032300100-5 and the Institute of Ecology and Evolution, Russian Academy of Sciences No. 121122300056-3 in the Unified State Information System for Accounting the Results of Civil Research, Development and Technological Works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kasumyan.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by S. Avodkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasumyan, A.O., Pavlov, D.S. Mechanisms of Schooling Behavior of Fish. J. Ichthyol. 63, 1279–1296 (2023). https://doi.org/10.1134/S0032945223070081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223070081

Keywords:

Navigation